Southampton

3D Chirp

True 3D Decimetre-Resolution Subbottom Profiling

University of Southampton -Justin Dix, Tim Henstock, and Jon Bull SAND Geophysics - Mark Vardy, Jerome Malgorn

- Jointly developed by the University of Southampton and Kongsberg GeoAcoustics, the 3D Chirp subbottom profiler is designed to record the reflected seismic wavefield in true 3D at decimetre-resolution.
- The 60-hydrophone groups are distributed in a 25.0 x 25.0 cm spaced grid around a central source array of 4 Chirp transducers, permitting a theoretical mid-point bin size of 12.5 cm with regular sampling both along- and across-track as well as full azimuthal coverage.
- Custom source waveform specifically developed to provide > 3 octave (1.5 - 13.0 kHz) bandwidth signal with proven vertical resolution < 10 cm and penetration of > 30 m in finegrained silts/clays, 5 - 10 m in coarse-tomedium sands, and 5 - 10 m in mudstone/siltstone/limestone sequences.
- Bespoke processing software/workflows developed at Southampton permit:
 - Near real-time NMO/Stacked and NMO/Semblance volume generation;
 - Natively anti-alias filtered 3D pre-stack Kirchhoff time migration;
 - Stochastic impedance inversion and intrinsic Q_p determination.
- Writes standard-compliant IEEE SEG-Y files for processing using off-the-shelf software.
- Data sets have been acquired for both academic and commercial purposes from a broad range of different environments, including:
 - Pre- and post-installation offshore infrastructure site surveys;
 - Inshore and near-shore geohazard imaging and characterisation;
 - UXO and archaeological target imaging;
 - Reservoir analogue characterization.

Specification	System Dimensions:	3 x 2 m
	Source Array:	4 Chirp transducers arranged in a Maltese Cross
	Source Waveform:	1.5 – 13.0 kHz broadband Chirp sweep Up to 8 Hz shot-rate.
	Receiver Array:	60 hydrophones groups at 25 cm spacing (inline and crossline)
	Typical Resolution:	Vertical: < 10 cm Horizontal: 37.5 cm
Navigation	Normal Accuracy:	1-2 cm horizontal and vertical
	Absolution Position:	RTK-GPS with post- processed base station surveying
	Relative Source and Receiver positions:	Dual-antenna RTK-GPS heading combined with motion reference unit (MRU) attitude measurements
Typical Operation	Water Depths:	< 5 m to at least 80 m (maximum to date)
	Survey Speed:	3 – 5 knots
	Survey Areas:	Several 100s m ² to c. 150,000 m ²
	Processing Workflow:	Real-time data QC Near real-time NMO- stacked volumes Pre-stack Kirchhoff time migration imaging

Ocean and Earth Science, National Oceanography Centre Southampton

Southampton

Figure 1: Annotated photo of 3D Chirp towed array. System is Figure 2: Example data set from a presurface towed either alongside or a short distance behind a installation survey over a proposed offshore vessel of opportunity.

wind turbine location (Dix et al, 2016).

Figure 3: Annotated example data set from a shallow geohazard case study near Finneidfjord, Norway (Vardy et al, 2012). Imaging target was the interaction between a pre-existing mass transport deposit and a 0.3 – 0.4 m-thick, geologically complex weak layer thought to influence local slope stability. Water depth was 50 -60 m and area covered 150 x 1100 m. Data are pre-stack Kirchhoff time migrated onto a 12.5 x 12.5 cm midpoint grid using the frequency-approximated algorithm of Vardy and Henstock (2010).

References

Bull et al (2005), Marine Geophysical Researches 26, p. 157-169; Vardy et al (2008), Geophysics 73(2), p. B33-B40; Plets et al (2009), Journal of Archaeological Science 36, p. 408-418; Vardy and Henstock (2010), Geophysics 75(6), p. S211-S218; Vardy et al (2011), The Leading Edge Feb. 2011, p. 154,159; Vardy et al (2012), Near Surface Geopshyics 10, p. 267-277; Dix et al (2016), Near Surface Geoscience 2016 - The Second Applied Marine Geophysics Conference.

Ocean and Earth Science, National Oceanography Centre Southampton University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH United Kingdom Tel: +44 (0)23 8059 2011 Fax: +44 (0)23 8059 3059 www.southampton.ac.uk/oes